Power Electronics Converters Design
Power electronics is one of the contemporary subjects of electrical engineering which has seen a lot of advancements in recent times and has impacted human life in almost every sphere. We over selves use so many power electronic applications in our daily life, without even realizing t. Now the question stands as, “what is power electronics?”
We can define power electronics as a subject which is a hybrid of power engineering, analogue electronics, semiconductor devices and control systems. We derive the fundamentals of each subject and apply it in an amalgamated way so as to get a regulated form of electrical energy. Electrical energy in itself is not usable until it is converted into a tangible form of energy such as motion, light, sound, heat etc. In order to regulate these forms of energy, an effective way is to regulate the electrical energy itself and this forms the content of the subject power electronics.
A key step for the development of wireless charging systems was the publication in 2020 of a standard for wireless charging. J2954 defines a unidirectional wireless charging system of up to 11 kW at a frequency range of 81.39-90 kHz.
Three power levels are defined – 3.7 kW for WPT1, 7 kW for WPT2 and 11 kW for WPT3. With a maximum separation between the coils of 250 mm, the grid-to-battery efficiency is expected to be up to 94%, although the standard defines three vertical distances, or Z values, from 100 to 250 mm.
The standard also defines the acceptable tolerance for aligning the ground coil and the vehicle coil in the lateral x and y directions when the vehicle is driven over the ground pad. This ranges from ±75 mm in the direction of travel and ±100 mm in the lateral direction. [Courtesy: SAE J2954]
I am working on power electronics converters for wireless power transfer for Electric Vehicles and general purposes .
Besides, I am trying to learn new technique for different converters.

WPT Architecture [Courtesy: SAE J2954]
